

THE INTERNATIONAL EPD® SYSTEM

Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

SELEX® Plywood 9mm

Programme:The International EPD® System
EPD registered through the fully aligned regional programme:
Hub EPD® Latin AmericaProgramme operator:EPD International AB,
Regional Hub: EPD Latin AmericaEPD registration number:S-P-02011Publication date:2022-12-20Valid until:2027-12-19

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Programme information

Programme:	mme: The International EPD® System www.environdec.com EPD registered through the fully aligned regional programme:Hub EPD® Latin America www.epd-americalatina.com	
Programme Operator	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden EPD Latin America Chile office: Alonso de Ercilla 2996, Ñuñoa, Santiago. Mexico office: Av. Convento de Actopan 24 Int. 7ª, Colonia Jardines de Santa Mónica. Tlalnepantla de Baz, Estado de México, México. C.P. 54050.	

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product category rules (PCR): PCR 2019:14 Construction Products VERSION 1.11, 2021-02-05, UN CPC 315

PCR review was conducted by: Technical Committee of the International EPD® System

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

 \Box EPD process certification \boxtimes EPD verification

Third party verifier: *Ruben Carnerero Email: r.carnerero@ik-ingenieria.com Approved by: The International EPD*[®] *System*

Procedure for follow-up of data during EPD validity involves third party verifier:

 \boxtimes Yes \Box No

Developed by: EDGE Chile Email: contacto@edgechile.com Web: www.edgeenvironment.com

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

What is an EPD?

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life-cycle environmental impact of products.

The following EPD has been developed by CMPC for its SELEX® Plywood products.

Company information

Owner of the EPD CMPC Web: https://cmpcmaderas.com/en-us

Phone: +56 2 2441 2832

<u>Contact:</u> Gina Cerda- CMPC Maderas Chief of Development and Innovation - <u>gcerda@maderas.cmpc.cl</u> Nicolás Gordon – CMPC Sustainability and Enviroment Manager - nicolas.gordon@cmpc.cl

Address: Agustinas 1343, P.4, Santiago- Santiago, Chile

Description of the organization

CMPC Companies is a forestry and paper holding of global presence, controlled by the Matte family, founded in 1920 as "Compañía Manufacturera de Papeles y Cartones". Currently the company has over 17000 direct employees, distributed between their industrials plants and forestry operations in 11 countries.

In present days, the company has the second forestry heritage in Chile, with over 1.300.000 hectares in Chile, Brazil and Argentina.

The company's business is the production and commercialization of timber, cellulose, packaging, paper, tissues and personal care products, which come from sustainable forest certified operations. Given its structure, the main business is cellulose, which is approximately 49% of its consolidated sales. This is divided in Pulp, Timber and Forestry. Following cellulose there is the Softys branch, which represents 35% of sales. Biopackaging is in third place with 16% of sales.

The company's mission is to produce and commercialize- from plantations stablished by men- timber, cellulose, packaging, paper, tissues and personal care products, sustainable in time, of superior quality and competitive, innovating and adding value to shareholders and clients, and creating development opportunities for workers and local communities. Sustainability is seek to reach good economic performance, through the respect of stakeholders and care for the environment.

To fulfill the mission, everyone working in CMPC are action orientated, according to 5 fundamental values of the company:

- 1. Respect for people
- 2. Care for the environment
- 3. Compliance with strict legal norms
- 4. Loyalty to compete

5. Consideration for neighbor's needs

The corporate purpose- Create, Coexist, and Conserve-, the 3C's, is comprehensive of its way to make business and guide the corporate role towards a sustainable future.

Sustainability

Following its Mission, Values and corporate Purpose, CMPC integrates sustainability in an strategic way, oriented to the future in each business unit, with their respective branches and subsidiaries, as well as in every operation and influence territory, and with each stakeholder. This approach is based on the following fundamental components:

- Commitment to UN's Sustainable Development Goals 2030 Agenda.
- Positive and negative impacts identified through ESG Materiality Assessment across the value chain.
- Risks to which the company is exposed and its role in the society.
- Sustainability Targets.
- Disclosure and transparency.

Through the implementation, action and recognition of UN Global Compact's 10 principals, which focus on topics going from human rights, work relationships, anti- corruption, to environmental issues, CMPC seeks to reflect in its act, processes and final products, sustainability attributes and environmental impacts, where tools and certifications, such as type III environmental declarations allow to inform, communicate and assess different products under sustainability standards.

Name and location of production site(s):

CMPC Maderas Plywood plant- Avenida Jorge Alessandri s/n. Collipulle, Araucanía, Chile

Product information

Product name

The products included in this EPD are CMPC's SELEX® Plywood products

Product identification and description

UN CPC code: 315

CMPC's SELEX® Plywood products included in this EPD are presented below. The variation of impact across products is lower than +/- 10%, therefore the results will be presented for the average product. A variation of each product to this average will be presented in Appendix A.

SELEX® Plywood A/C

SELEX® Plywood A/C is a product free of knots and open defects, with high visual quality, strength, and versatility. Main applications include furniture and carpentry, decorative projects, laminate base, wall and ceiling veneer, industrial applications. Table 1 presents the main characteristics, while Illustration 1 has a visualisation of the product.

Dimensions (mm)	1220x2440 and 1200x2400
Thickness (mm)	9
Thickness (inches)	11/32
N° of layers	3
Density	480 - 550 kg / m³
Sanding grain	150 grits on front and 120 grits on back
Adhesive	Phenol-formaldehyde that complies with the E1 emission and CARB standard.
Moisture content	8% to 12%
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB
Forestry certification	FSC® and PEFC™ certified products

Table 1- SELEX® Plywood A/C main characteristics

Illustration 1- SELEX® Plywood A/C

SELEX® Plywood B/B Deco

SELEX® Plywood B/B Deco is a high visual quality on both sides, assuring a high resistance. This product features aesthetic value and a solid surface on both sides. Main applications include furniture and carpentry, lamination base, decorative projects, and transportation industry. Table 2 presents the main characteristics, while Illustration 2 has a visualisation of the product.

Table 2- SELEX® Plywood B/B Deco main characteristics

Dimensions (mm)	1220x2440 and 1200x2400
Thickness (mm)	9
Thickness (inches)	11/32
N° of layers	3
Density	480 - 550 kg / m³
Sanding grain 150 grits on front and 120 grits o	
Adhesive Phenol-formaldehyde that complies the E1 emission and CARB standar	

Moisture content	8% to 12%	
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB	
Forestry certification	FSC® and PEFC [™] certified products	

Illustration 2- SELEX® Plywood B/B Deco

SELEX® Plywood B/Cp

SELEX® Plywood B/Cp are panels of high visual quality, with great dimensional stability and with excellent physical-mechanical resistance. Main applications include furniture and carpentry, concrete forming and various applications in construction. Table 3 presents the main characteristics, while Illustration 3 has a visualisation of the product.

Table 3- SELEX® Plywood B/Cp main characteristics

Dimensions (mm)	1220x2440 and 1200x2400	
Thickness (mm)	9	
Thickness (inches)	11/32	
N⁰ of layers	3	
Density	480 - 550 kg / m³	
Sanding grain	150 grits on front and 120 grits on back	
Adhesive	Phenol-formaldehyde that complies with the E1 emission and CARB standard.	
Moisture content	8% to 12%	
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB	
Forestry certification	FSC® and PEFC [™] certified products	

Illustration 3- SELEX® Plywood B/Cp

SELEX® Plywood B/C

SELEX® Plywood B/C present high visual quality, high strength, and high versatility. Main applications include furniture and carpentry, decorative projects, industrial projects, DIY projects and construction. Table 4 presents the main characteristics, while Illustration 4 has a visualisation of the product.

Table 4- SELEX® Plywood B/C main characteristics

Dimensions (mm)	1220x2440 and 1200x2400
Thickness (mm)	9
Thickness (inches)	11/32
Nº of layers	3
Density	480 - 550 kg / m³
Sanding grain	150 grits on front and 120 grits on back
Adhesive	Phenol-formaldehyde that complies with the E1 emission and CARB standard.
Moisture content	8% to 12%
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB
Forestry certification	FSC® and PEFC [™] certified products

Illustration 4- SELEX® Plywood B/C

SELEX® ® Plywood B/D Structural AUS

SELEX® Plywood B/D Structural AUS is structurally tested and AS/NZS229-standard approved, with a high-quality appearance, great resistance, and broad versatility. Main applications include furniture and carpentry, interior veneers, decorative projects, industrial projects, DIY projects and construction. Table 5 presents the main characteristics, while Illustration 5 has a visualisation of the product.

Table 5- SELEX® Plywood B/D Structural AUS main characteristics

Dimensions (mm)	1220x2440 and 1200x2400	
Thickness (mm)	9	
Degrees F's (structural)	F11	
Nº of layers	3	
Density	480 - 550 kg / m³	
Sanding grain	150 grits on front and 120 grits on back	
Adhesive	Phenol-formaldehyde that complies with the E0 emission standard.	
Moisture content	8% to 12%	
Structural certification	AS/NZS 2269	
Forestry certification	FSC® and PEFC [™] certified products	

Illustration 5- SELEX® Plywood B/D Structural AUS

SELEX® Plywood Cp/C

SELEX® Plywood Cp/C are panels with great dimensional stability and with excellent physicalmechanical resistance. Main applications include concrete forming and general applications for construction. Table 6 presents the main characteristics, while Illustration 6 has a visualisation of the product.

Table 6- SELEX® Plywood Cp/C main characteristics

Dimensions (mm)	1220x2440 and 1200x2400	
Thickness (mm)	9	
Thickness (inches)	11/32	
N⁰ of layers	3	
Density	480 - 550 kg / m³	
Sanding grain	150 grits on front and 120 grits on back	
Adhesive	Phenol-formaldehyde that complies with the E1 emission and CARB standard.	
Moisture content	8% to 12%	
Structural certification	EN 13986 (CE2 +) by HFB	
Forestry certification	FSC® and PEFC [™] certified products	

Illustration 6- SELEX® Plywood Cp/C

SELEX® Plywood C/D

SELEX® Plywood C/D panels are intended for use in construction, with high dimensional stability. Their excellent mechanical and physical resistance to bending, shearing, and compression allows it to be used both indoors and outdoors. Applications include roofing, structural walls, floor support structure, perimeter closures and packaging. Table 7 presents the main characteristics, while Illustration 7 has a visualisation of the product.

Table 7- SELEX® Plywood C/D main characteristics

Dimensions (mm)	1220x2440 and 1200x2400	
Thickness (mm)	9	
Thickness (inches)	11/32	
N° of layers	3	
Density	480 - 550 kg / m³	
Sanding grain	150 grits on front and 120 grits on back	
Adhesive	Phenol-formaldehyde that complies with the E1 emission standard.	
Moisture content	8% to 12%	
Structural certification	PS1 - 19 por TP & EN 13986 (CE2+) by HBF	
Forestry certification	FSC® and PEFC™ certified products	

SELEX® Plywood CD No Structural AUS

SELEX® Plywood CD No Structural AUS has a variety of uses throughout the construction industry, particularly when structural characteristics are not required, whether that means not bearing weight or in cases where there is no requirement to meet the construction codes of Australia or New Zealand. Main applications include fences, non-structural packaging, kennels, mailboxes, dollhouses, DIY projects and general applications. Table 8 presents the main characteristics, while Illustration 8 has a visualisation of the product.

Table 8- SELEX® Plywood CD No Structural AUS main characteristics

Dimensions (mm)	1220x2440 and 1200x2400	
Thickness (mm)	9	
Thickness (inches)	11/32	
N° of layers	3	
Density	480 - 550 kg / m³	
Sanding grain	150 grits on front and 120 grits on back	
Adhesive	Phenol-formaldehyde that complies with Super E0 emission standard.	
Moisture content	8% to 12%	
Structural certification	PS1 - 19 por TP & EN 13986 (CE2+) by HBF	
Forestry certification	FSC® and PEFC™ certified products	

Illustration 8- SELEX® Plywood CD No Structural AUS

SELEX® Plywood Siding

SELEX® Plywood Siding panels have excellent visual quality, perfect for use in interior uses and various design projects, offering an attractive solution serving for multiple applications. Main applications include interior, ceilings, decorative projects, exterior, shed and barn walls, and soffit. Table 9 presents the main characteristics, while Illustration 9 has a visualisation of the product.

Table 9- SELEX® Plywood Siding main characteristics

Dimensions (mm)	1220x2440 and 1200x2400
Thickness (mm)	9
Thickness (inches)	11/32
Nº of layers	3
Density	480 - 550 kg / m³
Sanding grain	150 grits on front and 120 grits on back
Adhesive	Phenol-formaldehyde that complies with the E1 emission and CARB standard.
Moisture content	8% to 12%
Structural certification	ANSI-APA PRP 210 & EN 13986 (CE2+) by HFB
Forestry certification	FSC® and PEFC [™] certified products

Illustration 9- SELEX® Plywood Siding

SELEX® Plywood CAB

This product is very similar to SELEX® Plywood B/C, and is mostly sold in the US market for cabinet making.

SELEX® Plywood RECH

This is usually rejected product used for a wide range of uses, mostly carpentry and furniture.

Content information

Table 10 presents the composition of CMPC SELEX® Plywood products, as well as packaging materials. No dangerous substances from the candidate list of SVHC are included in the product.

Table 10- Product components

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Pine	228	-	100%
Water	41-61	-	-
Adhesive	56-69	-	-
Others	0-6	-	-
TOTAL	495-521	-	77%
Packaging materials Weigl		Weight-% (versus the product)	
LDPE	0.467	0.09%	
Polyester	0.051	0.01%	
Low alloyed steel	0.266	0.05%	
Cardboard	0.005	0.001%	
TOTAL	0.197	0.16%	

Dangerous substances from the candidate list of SVHC for Authorisation	EC No.	CAS No.	Weight-% per functional or declared unit

Not applicable

LCA information

A life cycle assessment is a technique for assessing the environmental aspects and potential impacts associated with a product. By considering potential impacts throughout the life cycle of a product (upstream and downstream), the analysis avoids the shifting of burdens from one type of environmental impact to another, from one political region to another and from one stage to the other.

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life cycle environmental impacts of products. The following information describes the scope and methodology of this EPD for CMPC's SELEX® Plywood products.

Declared unit

This EPD has a cradle to gate with options approach, with a declared unit of 1 m³ of plywood products produced in Chile and installed across different countries across the world.

Reference service life

Given the scope of the analysis (cradle to gate with options) no reference service life is relevant.

Geographial scope

The geographical scope of this EPD is global.

Time representativeness

The information collected for the analysis is 2020, considering the production of all products in this year.

Database(s) and LCA software used

The inventory data for the process are entered in SimaPro LCA program and linked to the pre-existing data for the upstream feedstocks and services. Data were selected per geographic relevance from ecoinvent 3.6 database (Ecoinvent Centre, 2019).

Description of system boundaries

This EPD is cradle to gate grave, however, given that some of the modules are not applicable for CMPC SELEX® Plywood products, the scope is cradle to gate with options¹. Table 11 has the detail of the modules included.

¹ Cradle to gate with options, modules C1–C4, module D and with optional modules (A1–A3 + C + D and additional modules). The additional modules may be one or more selected from A4–A5 and/or B1–B7.

	Pro	duct st	age	proc	ruction cess ige			Us	se sta	ge			Er	nd of li	ife sta	ge	Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	A3	A4	A5	B1	B2	В3	В4	В5	B6	B7	C1	C2	C3	C4	D
Modules declared	х	x	x	х	х	ND	ND	ND	ND	ND	ND	ND	x	x	x	x	x
Geography	mostl	oliers y from nile	Chile	Glo	bal	ND	ND	ND	ND	ND	ND	ND		Glo	bal		Global
Specific data used			100%			-	-	-	-	-	-	-	-	-	-	-	-
Variation – products	10% m		ion betwe I the ave	een each rage	-	-	-	-	-	-	-	-	-	-	-	-	
Variation – sites	Not ap	plicable,	only one	e producti	ion site	-	-	-	-	-	-	-	-	-	-	-	-

Table 11- Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation

System diagram


Figure 1 presents the system diagram for plywood manufacturing process. This is described below:

- **Reception:** reception of logs that go into the process.
- **Debarking:** the bark is separated from the logs.
- **Log yard:** yard where debarked logs wait to start the manufacturing process. The logs are sprayed with water and chemicals.
- **Conditioning:** the logs go to chambers of hot water for the plasticization of the fibers in the wood.
- **Peeling:** the logs go to a lathe that spins them against a blade to produce a sheet of timber.
- **Drying:** drying to obtain an optimal level of humidity.
- **Composer:** any fixing of individual sheets with glue.
- Gluing & lay-up: the sheets receive adhesive and the boards are formed.
- **Pre-pressing & pressing:** pressing of the boards to give enough consistency to them and allow them to forge.
- **Automatic and manual repairing:** the repairing of the boards allows for an increase in the quality, by eliminating defects.
- **Trimming:** the boards are given their proper dimensions.
- **Sanding:** sanding for calibration and finishing.
- **Other finishing (if applicable):** include the creation of the siding, cutting and painting, depending on the product.
- Packaging: packaging of the products

• **Storage:** final products go to the warehouse of finished products to await for their shipment.

Foreground data sources and quality

Foreground data on raw material requirements, manufacture and distribution was provided by CMPC for the year 2020. Background data was retrieved from ecoinvent 3.6, which dates from 2019, for processes occurring in Chile and countries supplying raw materials. In compliance with the relevant PCR, generic processes were used for feedstock materials.

Data quality is considered medium to good. More details in Table 12 below.

				E PI	R
d quality					
Module A2	Module A3	Module A4	Module A5	Module C	Module D
Transportati on from national suppliers to CMPC's installations	Water inputs Consumable inputs Waste outputs	Distribution information	Ancillary materials and energy for installation	End of life of products	Recycla bility potential

Estimations

based on

products

description

Collected by

CMPC staff

for 2020

Estimati

ons

t for

of

each

country

product

sales

Good

Good

Good

based

on types

of waste

treatmen

Estimations

based on

types of

waste

Table 12- Foreground data sources and quality

Module

material

Collected

by CMPC

staff for

2020

Supplier

locations

provided by

CMPC staff

inputs Energy inputs

A1

Raw

Product

Range and

properties

Collected

by CMPC

staff for

2020

physical

data

Data

Sourc

е

for 2020. treatment for and use Distances made by each country calculated CMPC staff of product with online sales tool. Transport specification s assumed from ecoinvent 3.6 processes. Geographical Very good Very good Fair Good representativeness Technical Very good Good Very good Fair representativeness Time Very good Very good Fair Good representativeness

Collected by

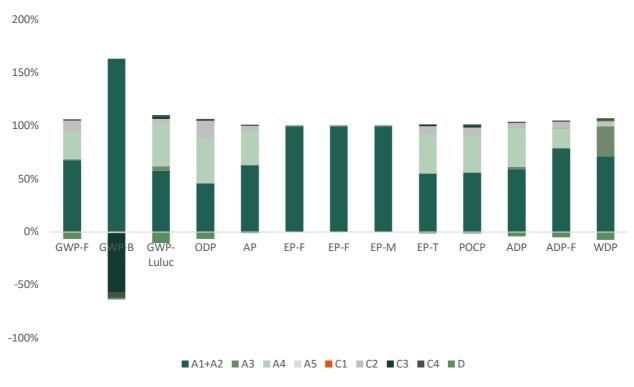
2020

CMPC staff for

Exclusion of small amounts and cut off criteria

Environmental impacts relating to personnel, infrastructure, and production equipment not directly consumed in the process are excluded from the system. All other reported data were incorporated and modelled using the best available life cycle inventory data.

No other cut offs were necessary for the modules included in this EPD.


Allocation

Due to price differences, economic allocation was performed for wood co- products generated in the process, such as dust, trimmings, chips, etc. according to PCR guidelines.

Environmental Information

Potential environmental impacts

- Module A1+A2 (raw materials and energy) has the highest impact contribution to most environmental impacts (13 out of 14 indicators). Within these impacts, A1+A2 has the highest contribution in fresh and marine water eutrophication, both with 100% contribution. The pine is mostly responsible for eutrophication.
- Module A1+A2 also present an important sequestration of carbon in biomass, which can be seen in biogenic global warming potential indicator. In contrast, this biogenic carbon is released back to the atmosphere or capture by the following life cycle in module C.
- On average, Module A4 (distribution to markets) has the second highest impact contribution due to the long distances to reach the main markets. This is particularly relevant for ozone depletion potential (43% contribution), abiotic depletion potential (mineral and metals) (37% contribution), and terrestrial eutrophication (37% contribution).
- The manufacturing process (Module A3) has a low impact contribution across indicators, although it achieves a 28% contribution to water depletion potential due to the water used in the process, particularly for cleaning the logs.
- Module D has a positive effect on the results across impact indicators, although it is low because still roughly 40% of the product still goes to landfill.

Figure 2 Percentage contribution of life cycle stages to the different potential environmental impact categories for the average plywood products manufactured by CMPC.

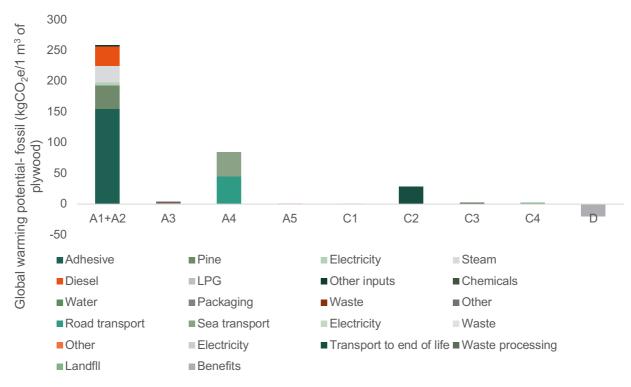
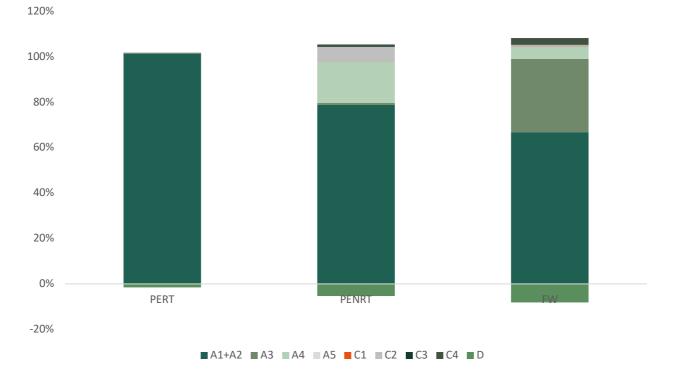



Figure 3 - Contribution of main inputs and outputs to fossil global warming potential by module

Resource use

- Module A1+A2 (raw materials and energy) has the highest use of resources in all indicators, although some of these can be considered positive impact, such as use of renewable primary energy resources as raw materials through the pine wood.
- Module A1+A2 also presents the highest contribution to total non- renewable primary energy, with adhesive contributing to a 52% of the module.
- Module A3 (manufacturing) only has relevant contribution (32%) to use of fresh water due to the water use in the process.
- Module A4 (distribution to markets) has a small contribution across impacts, only relevant for use of non- renewable energy (18%) due to the burning of fossil fuel.

Figure 4 Percentage contribution of life cycle stages to the different resource use impact categories for the average plywood products manufactured by CMPC.

Figure 5- Contribution of main inputs and outputs of total energy use by module

Waste and Output flows

- Wood going to landfill (Module C4) has the highest contribution to non- hazardous waste disposed (80%).
- Use of energy in Module A1+A2 and transport (Module A4) have the highest contribution to hazardous waste (47%) and radioactive waste (41%), respectively. These modules also have the highest contribution to radioactive waste disposed

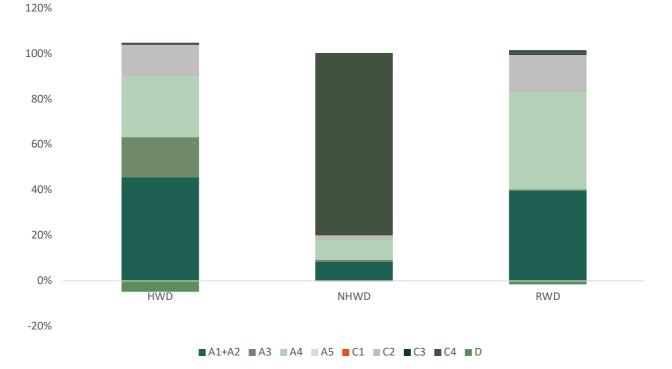
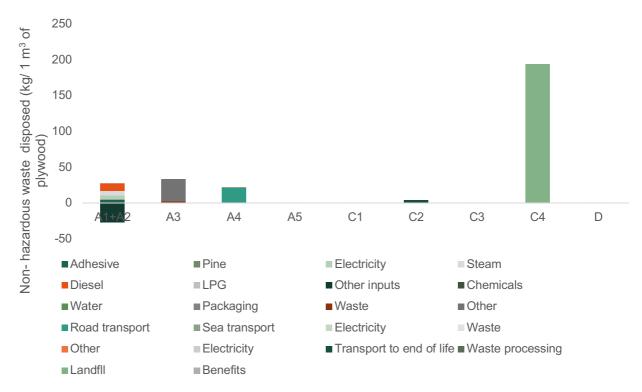



Figure 6- Percentage contribution of life cycle stages to waste flows impact categories for the average plywood products manufactured by CMPC

SELEX® Plywood products

Table 13- Potential environmental impact – mandatory indicators according to EN 15804

Results per 1 m ³ of CMPC 9mm SELEX® Plywood Products													
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	C1	C2	C3	C4	D	
GWP-fossil	kg CO ₂ eq.	2.28E+02	3.10E+01	3.64E+00	2.62E+02	1.04E+02	2.62E-01	1.06E-01	3.49E+01	2.46E+00	2.57E+00	-2.44E+01	
GWP-biogenic	kg CO ₂ eq.	-8.46E+02	9.13E-02	4.59E+00	-8.41E+02	1.73E-01	2.06E-02	1.24E-03	3.59E-02	2.90E+02	2.41E+01	9.17E+00	
GWP-luluc	kg CO ₂ eq.	7.83E-02	1.92E-02	7.06E-03	1.05E-01	6.98E-02	4.04E-05	1.29E-05	5.08E-03	3.40E-03	2.67E-03	-1.73E-02	
GWP-total	kg CO ₂ eq.	-5.51E+02	3.12E+01	8.23E+00	-5.12E+02	1.04E+02	2.83E-01	1.07E-01	3.49E+01	2.93E+02	2.66E+01	-1.52E+0	
ODP	kg CFC 11 eq.	1.58E-05	6.31E-06	3.69E-07	2.25E-05	2.09E-05	8.57E-09	2.73E-09	7.59E-06	6.55E-08	7.67E-07	-3.22E-06	
AP	mol H⁺ eq.	3.33E+00	1.24E-01	1.68E-02	3.48E+00	1.81E+00	1.07E-03	8.44E-04	2.11E-01	3.58E-02	2.17E-02	-6.22E-02	
EP-freshwater	kg PO ₄ ³⁻ eq.	3.21E+00	3.13E-03	1.43E-03	3.21E+00	7.15E-03	8.38E-05	7.65E-05	8.65E-04	1.07E-03	5.61E-04	-2.19E-03	
EP-freshwater	kg P eq.	1.15E+02	2.13E-02	6.10E-03	1.15E+02	1.76E-01	4.88E-04	3.03E-04	3.10E-02	1.42E-02	3.92E-02	-1.37E-02	
EP-marine	kg N eq.	2.38E+02	3.32E-02	4.53E-03	2.38E+02	4.51E-01	5.96E-04	2.00E-04	8.31E-02	1.50E-02	9.00E-02	-1.82E-02	
EP-terrestrial	mol N eq.	6.99E+00	3.62E-01	3.57E-02	7.39E+00	5.00E+00	2.93E-03	2.09E-03	9.12E-01	1.63E-01	8.07E-02	-2.01E-01	
POCP	kg NMVOC eq.	1.83E+00	9.05E-02	1.01E-02	1.93E+00	1.22E+00	7.48E-04	5.05E-04	2.22E-01	7.60E-02	2.54E-02	-5.11E-02	
ADP- minerals&metals*	kg Sb eq.	4.39E-04	1.84E-04	2.43E-05	6.47E-04	3.94E-04	4.00E-07	2.94E-07	4.10E-05	3.77E-06	8.46E-06	-4.14E-05	
ADP-fossil*	MJ	5.67E+03	4.44E+02	6.24E+01	6.18E+03	1.41E+03	1.74E+00	1.25E+00	4.80E+02	2.56E+01	5.98E+01	-3.93E+02	
WDP	m ³	6.91E+01	1.88E+00	2.81E+01	9.90E+01	4.31E+00	7.16E-02	6.21E-02	5.70E-01	9.05E-02	2.58E+00	-7.33E+00	

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion potential, deprivation-weighted water consumption

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Table 14- Potential environmental impact – additional mandatory and voluntary indicators

	Results per 1 m ³ of CMPC 9mm SELEX® Plywood Products													
Indicator Unit A1 A2 A3 Tot.A1-A3 A4 A5 C1 C2 C3 C4 D														
GWP-GHG ²	kg CO₂ eq.	2.28E+02	3.10E+01	3.64E+00	2.62E+02	1.04E+02	2.62E-01	1.06E-01	3.49E+01	2.46E+00	2.57E+00	-2.44E+01		

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

Table 15- Use of resources

Acronyms

				Results per	⁻ 1 m ³ of CM	PC 9mm SE	LEX® Plywe	ood Product	ts			
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	C1	C2	C3	C4	D
PERE	MJ	8.86E+02	7.25E+00	3.43E+00	8.97E+02	1.71E+01	4.06E-01	3.90E-01	2.33E+00	3.28E+00	1.09E+00	-2.03E+02
PERM	MJ	1.28E+04	0.00E+00	6.68E-05	1.28E+04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	1.37E+04	7.25E+00	3.43E+00	1.37E+04	1.71E+01	4.06E-01	3.90E-01	2.33E+00	3.28E+00	1.09E+00	-2.03E+02
PENRE	MJ	6.09E+03	4.71E+02	6.16E+01	6.63E+03	1.50E+03	1.85E+00	1.33E+00	5.10E+02	2.71E+01	6.36E+01	-4.33E+02
PENRM	MJ.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	6.09E+03	4.71E+02	6.16E+01	6.63E+03	1.50E+03	1.85E+00	1.33E+00	5.10E+02	2.71E+01	6.36E+01	-4.33E+02
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m ³	8.02E-01	2.78E-02	3.97E-01	1.23E+00	6.45E-02	8.70E-04	6.32E-04	8.34E-03	2.34E-03	3.62E-02	-1.00E-01
											ry energy resour	

raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERM = Use of non-renewable primary energy resources used as raw materials; PERM = Use of non-renewable primary energy resources; SM = used as raw materials; PERM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

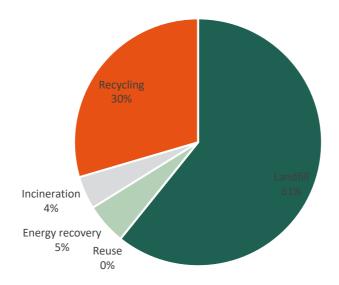
² The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Table 16- Waste production

	Results per 1 m ³ of CMPC 9mm SELEX® Plywood Products													
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	C1	C2	C3	C4	D		
Hazardous waste disposed	kg	3.59E-03	1.21E-03	1.76E-03	6.57E-03	2.74E-03	2.81E-06	1.40E-06	1.30E-03	1.48E-05	9.29E-05	-4.81E-04		
Non-hazardous waste disposed	kg	1.30E+01	1.44E+01	2.39E+00	2.97E+01	2.71E+01	1.72E-02	8.39E-03	5.26E+00	2.34E-01	2.40E+02	-7.39E-01		
Radioactive waste disposed	kg	6.31E-03	2.75E-03	1.09E-04	9.16E-03	9.23E-03	3.11E-06	3.82E-07	3.35E-03	9.80E-05	3.55E-04	-3.32E-04		

Table 17- Output flows

	Results per 1 m ³ of CMPC 9mm SELEX® Plywood Products														
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	C1	C2	C3	C4	D			
Components for re-use	kg	0	0	3.32E+01	3.32E+01	0	0	0	0	1.37E-02	0	0			
Material for recycling	kg	0	0	4.22E+02	4.22E+02	0	0	0	0	1.16E+02	0	0			
Materials for energy recovery	kg	0	0	3.98E+02	3.98E+02	0	0	0	0	2.11E+01	0	0			
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0	0			
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0	0			


Table 18- Information on biogenic carbon content

Results for 1 m ³ of CMPC 9mm SELEX® Plywood Products											
BIOGENIC CARBON CONTENT	Unit	QUANTITY									
Biogenic carbon content in product	kg C	-332									
Biogenic carbon content in packaging	kg C	-0.004									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

Additional information

The end-of-life modelling is based on the most realistic scenario, using average values for waste treatment in the different countries where CMPC's plywood is sold. Figure 8 below presents the modelled scenario.

Figure 8- End of life modelled scenario.

Given the end-of-life scenarios of plywood, module D was modelled with the following assumptions:

- Energy recovery: since most of the energy recovery happens in Europe, the assumption is made that plywood to recovery avoids the production of heat through natural gas. The specific energy avoided is based on the calorific value of wood pellets (17MJ/kg of product).
- Reuse: assumes the product is used without any modification, therefore the production of plywood is avoided.
- Recycling: it assumes that plywood converts into wood chips, with a loss of quality of the product. The correction factor is estimated at 0.2.

References

Ecoinvent Centre, 2019. ecoinvent version 3.6 database, Zurich: ETH, Agroscope, EMPA, EPFL, PSI.

EPD International, 2021. Product Category Rules for Construction Products, PCR2019:14, 2021-02-05 (version 1.11), Stockholm: EPD International.

EPD International, 2019. General Programme Instructions for the International EPD System. Version 3.01. 2019-09-18.

European Standards, 2019. Sustainability of construction works - Environmental product declarations, CSN EN 15804:2019, Pilsen: European Standards.

Gobierno de Chile, 2020. Hoja de Ruta RCD Economía Circular en Construcción 2035, Santiago, CHile: s.n.

Google, 2017. Maps. [Online].

International Standardization Organization, 2006. ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework, Geneva: ISO.

International Standardization Organization, 2006. ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines, Geneva: ISO

International Standardization Organization, 2007. Sustainability in building construction - Environmental declaration of building products. ISO 21930:2007, Geneva: ISO.

Sea-Distances.org, 2017. Sea Distances. [Online] . Available at: https://sea-distances.org/

Impact indicator	A/C-9	B/B Deco-9	B/Cp-9	B/C-9	B/D Estructural AUS-9	Cp/C-9	C/D-9	CD No Estructural AUS-9	RANURADOS-9	CAB-9	RECH-9
GWP-fossil	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
GWP-biogenic	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
GWP-luluc	0%	1%	0%	0%	0%	0%	-1%	0%	1%	0%	0%
GWP-total	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
ODP	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
AP	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
EP-freshwater	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
EP-freshwater2	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
EP-marine	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
EP-terrestrial	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
РОСР	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
ADP- minerals&metals*	0%	-3%	2%	2%	0%	2%	-2%	2%	-3%	0%	0%
ADP-fossil*	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
WDP	0%	-2%	1%	1%	0%	1%	-1%	1%	-2%	0%	0%
GWP-GHG[1]	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PERE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PERM	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PERT	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PENRE	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PENRM	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PENRT	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
SM	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
RSF	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
NRSF	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
FW	0%	-2%	1%	1%	0%	1%	-1%	1%	-2%	0%	0%

Hazardous waste disposed	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%
Non-hazardous waste disposed	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Radioactive waste disposed	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Components for re-use	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Material for recycling	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Materials for energy recovery	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Exported energy, electricity	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Exported energy, thermal	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%

THE INTERNATIONAL EPD® SYSTEM

Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

SELEX® Plywood

from

CMPC

Programme:	The International EPD [®] System EPD registered through the fully aligned regional programme: Hub EPD [®] Latin America			
Programme operator:	EPD International AB, Regional Hub: EPD Latin America			
EPD registration number:	S-P-02010			
Publication date:	2022-12-20			
Valid until:	2027-12-19			

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Programme information

Programme:	The International EPD [®] System <u>www.environdec.com</u> EPD registered through the fully aligned regional programme:Hub EPD [®] Latin America www.epd-americalatina.com
Programme Operator	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden EPD Latin America Chile office: Alonso de Ercilla 2996, Ñuñoa, Santiago. Mexico office: Av. Convento de Actopan 24 Int. 7ª, Colonia Jardines de Santa Mónica. Tlalnepantla de Baz, Estado de México, México. C.P. 54050.

CEN standard EN 15804 serves as the Core Product Category Rules (PCR)

Product category rules (PCR): PCR 2019:14 Construction Products VERSION 1.11, 2021-02-05, UN CPC 315

PCR review was conducted by: Technical Committee of the International EPD® System

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

 \Box EPD process certification \boxtimes EPD verification

Third party verifier: *Ruben Carnerero Email: r.carnerero@ik-ingenieria.com Approved by: The International EPD*[®] *System*

Procedure for follow-up of data during EPD validity involves third party verifier:

 \boxtimes Yes \Box No

Developed by: EDGE Chile Email: contacto@edgechile.com Web: www.edgeenvironment.com

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

What is an EPD?

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life-cycle environmental impact of products.

The following EPD has been developed by CMPC for its SELEX® Plywood products.

Company information

Owner of the EPD CMPC Web: https://cmpcmaderas.com/en-us

Phone: +56 2 2441 2832

<u>Contact:</u> Gina Cerda- CMPC Maderas Chief of Development and Innovation - <u>gcerda@maderas.cmpc.cl</u> Nicolás Gordon – CMPC Sustainability and Enviroment Manager - nicolas.gordon@cmpc.cl

Address: Agustinas 1343, P.4, Santiago- Santiago, Chile

Description of the organization

CMPC Companies is a forestry and paper holding of global presence, controlled by the Matte family, founded in 1920 as "Compañía Manufacturera de Papeles y Cartones". Currently the company has over 17000 direct employees, distributed between their industrials plants and forestry operations in 11 countries.

In present days, the company has the second forestry heritage in Chile, with over 1.300.000 hectares in Chile, Brazil and Argentina.

The company's business is the production and commercialization of timber, cellulose, packaging, paper, tissues and personal care products, which come from sustainable forest certified operations. Given its structure, the main business is cellulose, which is approximately 49% of its consolidated sales. This is divided in Pulp, Timber and Forestry. Following cellulose there is the Softys branch, which represents 35% of sales. Biopackaging is in third place with 16% of sales.

The company's mission is to produce and commercialize- from plantations stablished by men- timber, cellulose, packaging, paper, tissues and personal care products, sustainable in time, of superior quality and competitive, innovating and adding value to shareholders and clients, and creating development opportunities for workers and local communities. Sustainability is seek to reach good economic performance, through the respect of stakeholders and care for the environment.

To fulfill the mission, everyone working in CMPC are action orientated, according to 5 fundamental values of the company:

- 1. Respect for people
- 2. Care for the environment
- 3. Compliance with strict legal norms
- 4. Loyalty to compete

5. Consideration for neighbor's needs

The corporate purpose- Create, Coexist, and Conserve-, the 3C's, is comprehensive of its way to make business and guide the corporate role towards a sustainable future.

Sustainability

Following its Mission, Values and corporate Purpose, CMPC integrates sustainability in an strategic way, oriented to the future in each business unit, with their respective branches and subsidiaries, as well as in every operation and influence territory, and with each stakeholder. This approach is based on the following fundamental components:

- Commitment to UN's Sustainable Development Goals 2030 Agenda.
- Positive and negative impacts identified through ESG Materiality Assessment across the value chain.
- Risks to which the company is exposed and its role in the society.
- Sustainability Targets.
- Disclosure and transparency.

Through the implementation, action and recognition of UN Global Compact's 10 principals, which focus on topics going from human rights, work relationships, anti- corruption, to environmental issues, CMPC seeks to reflect in its act, processes and final products, sustainability attributes and environmental impacts, where tools and certifications, such as type III environmental declarations allow to inform, communicate and assess different products under sustainability standards.

Name and location of production site(s):

CMPC Maderas Plywood plant- Avenida Jorge Alessandri s/n. Collipulle, Araucanía, Chile

Product information

Product name

The products included in this EPD are CMPC's SELEX® Plywood products

Product identification and description

UN CPC code: 315

CMPC's SELEX® Plywood products included in this EPD are presented below. The variation of impact across products is lower than +/- 10%, therefore the results will be presented for the average product. A variation of each product to this average will be presented in Appendix A.

SELEX® Plywood A/C

SELEX® Plywood A/C is a product free of knots and open defects, with high visual quality, strength, and versatility. Main applications include furniture and carpentry, decorative projects, laminate base, wall and ceiling veneer, industrial applications. Table 1 presents the main characteristics, while Illustration 1 has a visualisation of the product.

Dimensions (mm)	1220x2440 and 1200x2400								
Thickness (mm)	6.5	12	15	18	21	25	30		
Thickness (inches)	1/4"	15/32	19/32	23/32	13/16	1"	1 3/16		
Nº of layers	3	5	5	6/7	7	9	11		
Density	480 - 550 kg / m³								
Sanding grain	150 grits on front and 120 grits on back								
Adhesive	Phenol-formaldehyde that complies with the E1 emission and CARB standard.								
Moisture content	8% to 12%								
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB								
Forestry certification	FSC® and PEFC [™] certified products								

Table 1- SELEX® Plywood A/C main characteristics

Illustration 1- SELEX® Plywood A/C

SELEX® Plywood B/B Deco

SELEX® Plywood B/B Deco is a high visual quality on both sides, assuring a high resistance. This product features aesthetic value and a solid surface on both sides. Main applications include furniture and carpentry, lamination base, decorative projects, and transportation industry. Table 2 presents the main characteristics, while Illustration 2 has a visualisation of the product.

Dimensions (mm)	1220x2440 a	nd 1200x24	00				
Thickness (mm)	6.5	12	15	18	21	25	30
Thickness (inches)	1/4"	15/32	19/32	23/32	13/16	1"	1 3/16
N° of layers	3	5	5	6/7	7	9	11
Density	480 - 550 kg	/ m³					
Sanding	150 grits on front and 120 grits on back						
grain							
Adhesive	Phenol-forma	Idehyde that	complies wit	h the E1 emis	sion and CAI	RB standard	d.

Moisture content	8% to 12%
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB
Forestry certification	FSC® and PEFC [™] certified products

Illustration 2- SELEX® Plywood B/B Deco

SELEX® Plywood B/Cp

SELEX® Plywood B/Cp are panels of high visual quality, with great dimensional stability and with excellent physical-mechanical resistance. Main applications include furniture and carpentry, concrete forming and various applications in construction. Table 3 presents the main characteristics, while Illustration 3 has a visualisation of the product.

Table 3- SELEX® Plywood B/Cp main characteristics

Dimensions (mm)	1220x2440 and 1200x2400							
Thickness (mm)	6.5	12	15	18	21	25		
Thickness (inches)	1/4"	15/32	19/32	23/32	13/16	1"		
N° of layers	3	3 5 5 6/7 7 9						
Density	480 - 550 kg / ı	480 - 550 kg / m³						
Sanding grain	150 grits on fro	ont and 120 gi	its on back					
Adhesive	Phenol-formalo	lehyde that co	omplies with t	he E1 emissi	on and CARE	3 standard.		
Moisture content	8% to 12%							
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB							
Forestry certification	FSC® and PEFC [™] certified products							

EPD[®]

Illustration 3- SELEX® Plywood B/Cp

SELEX® Plywood B/C

SELEX® Plywood B/C present high visual quality, high strength, and high versatility. Main applications include furniture and carpentry, decorative projects, industrial projects, DIY projects and construction. Table 4 presents the main characteristics, while Illustration 4 has a visualisation of the product.

Table 4- SELEX® Plywood B/C main characteristics

Dimensions (mm)	1220x2440 a	nd 1200x24	00					
Thickness (mm)	6.5	12	15	18	21	25	30	
Thickness (inches)	1/4"	15/32	19/32	23/32	13/16	1"	1 3/16	
Nº of layers	3	5	5	6/7	7	9	11	
Density	480 - 550 kg	480 - 550 kg / m ³						
Sanding grain	150 grits on fi	150 grits on front and 120 grits on back						
Adhesive	Phenol-forma	Idehyde that	complies wit	h the E1 emis	sion and CAF	RB standard		
Moisture content	8% to 12%							
Structural certification	PS1-19 by TP & EN 13986 (CE2 +) by HFB							
Forestry certification	FSC® and PEFC™ certified products							

Illustration 4- SELEX® Plywood B/C

SELEX® ® Plywood CONSTRUCTION T&G

SELEX® Plywood CONSTRUCTION T&G is a panel specially made for construction. Suitable for structural applications such as roofing, flooring and wall sheathing. Table 5 presents the main characteristics, while Illustration 5 has a visualisation of the product.

Table 5- SELEX® Plywood CONSTRUCTION T&G

Dimensions (mm)	1200x2400				
Thickness (mm)	12	15	18	21	
N° of layers	5	5	7	7	
Density	480 - 550 kg / m³				
Sanding grain	150 grits on front and 120 grits on back				
Adhesive	Phenol-formaldehyd standard.	le that compli	es with the E	1 emission	
Moisture content	8% to 12%				
Structural certification	EN 13986 (CE2 +) by HFB				
Forestry certification	FSC® and PEFC™ certified products				

Illustration 5- SELEX® Plywood CONTRUCTION T&G

EPD[®]

SELEX® ® Plywood B/D Structural AUS

SELEX® Plywood B/D Structural AUS is structurally tested and AS/NZS229-standard approved, with a high-quality appearance, great resistance, and broad versatility. Main applications include furniture and carpentry, interior veneers, decorative projects, industrial projects, DIY projects and construction. Table 6 presents the main characteristics, while Illustration 6 has a visualisation of the product.

Table 6- SELEX® Plywood B/D Structural AUS main characteristics

Dimensions (mm)	1200x2400						
Thickness (mm)	7	12	15	18	21	25	
Degrees F's (structural)	F8	F8	F11	F11	F8	F8	
N° of layers	3	5	5	6/7	7	9	
Density	480 - 550 kg / m³						
Sanding grain	150 grits on fro	150 grits on front and 120 grits on back					
Adhesive	Phenol-formal	dehyde that o	complies with	the E1 emis	sion standa	rd.	
Moisture content	8% to 12%						
Structural certification	AS/NZS 2269						
Forestry certification	FSC® and PEFC™ certified products						

Illustration 6- SELEX[®] Plywood B/D Structural AUS

SELEX® Plywood Easy wall

SELEX® Plywood easy wood is a product with significant advantages and recognized for its quality, strength, and versatility. Main application is wall. Table 7 presents the main characteristics, while Illustration 7 has a visualisation of the product.

Table 7- SELEX® Plywood Easy Wall main characteristics

Dimensions (mm)	618 x2440			
Thickness (mm)	12	15		
Thickness (inches)	15/32	19/32		
N° of layers	5	5		
Density	480 - 550 kg / m ³			
Sanding grain	150 grits on front and 120 grits on back			
Adhesive	Phenol-formald complies with th emission.	,		
Moisture content	8% to 12%			
Structural certification	EN 13986 – EN 596 – EN 12871			
Forestry certification	FSC® and PEFC™ certified products			

Illustration 7- SELEX® Plywood Easy Wall

SELEX® Plywood Cp/C

SELEX® Plywood Cp/C are panels with great dimensional stability and with excellent physicalmechanical resistance. Main applications include concrete forming and general applications for construction. Table 8 presents the main characteristics, while Illustration 8 has a visualisation of the product.

Table 8- SELEX® Plywood Cp/C main characteristics

Dimensions (mm)	1220x2440 an	d 1200x240	0					
Thickness (mm)	6.5	12	15	18	21	25	30	
Thickness (inches)	1/4"	15/32	19/32	23/32	13/16	1"	1 3/16	
Nº of layers	3	5	5	6/7	7	9	11	
Density	480 - 550 kg /	480 - 550 kg / m³						
Sanding grain	150 grits on fro	150 grits on front and 120 grits on back						
Adhesive	Phenol-formal	dehyde that	complies wit	n the E1 emis	sion and CAF	RB standard	ł.	
Moisture content	8% to 12%							
Structural certification	EN 13986 (CE2 +) by HFB							
Forestry certification	FSC® and PEFC [™] certified products							

Illustration 8- SELEX® Plywood Cp/C

SELEX® Plywood C/D

SELEX® Plywood C/D panels are intended for use in construction, with high dimensional stability. Their excellent mechanical and physical resistance to bending, shearing, and compression allows it to be used both indoors and outdoors. Applications include roofing, structural walls, floor support structure, perimeter closures and packaging. Table 9 presents the main characteristics, while Illustration 9 has a visualisation of the product.

Table 9- SELEX® Plywood C/D main characteristics

Dimensions (mm)	1220x2440							
Thickness (mm)	6.5	12	15	18	21	25	30	
Thickness (inches)	1/4"	15/32	19/32	23/32	13/16	1"	1 3/16	
Nº of layers	3	5	5	6/7	7	9	11	
Density	480 - 550 kg /	480 - 550 kg / m³						
Sanding grain	150 grits on front and 120 grits on back							
Adhesive	Phenol-formal	dehyde that	complies wit	n the E1 emis	sion standard	ł.		
Moisture content	8% to 12%							
Structural certification	PS1 - 19 por TP & EN 13986 (CE2+) by HBF							
Forestry certification	FSC® and PEFC [™] certified products							

Illustration 9- SELEX® Plywood C/D

SELEX® Plywood CD No Structural AUS

SELEX® Plywood CD No Structural AUS has a variety of uses throughout the construction industry, particularly when structural characteristics are not required, whether that means not bearing weight or in cases where there is no requirement to meet the construction codes of Australia or New Zealand. Main applications include fences, non-structural packaging, kennels, mailboxes, dollhouses, DIY projects and general applications. Table 10 presents the main characteristics, while Illustration 10 has a visualisation of the product.

Table 10- SELEX® Plywood CD No Structural AUS main characteristics

Dimensions (mm)	1200x2400							
Thickness (mm)	6.5	12	15	18	21	25	30	
Thickness (inches)	1/4"	15/32	19/32	23/32	13/16	1"	1 3/16	
N° of layers	3	5	5	6/7	7	9	11	
Density	480 - 550 kg / m³							
Sanding grain	150 grits on fro	150 grits on front and 120 grits on back						
Adhesive	Phenol-formal	lehyde that c	omplies with	Super E0 em	nission standa	ard.		
Moisture	8% to 12%							
content								
Forestry certification	FSC® and PEFC™ certified products							

Illustration 10- SELEX® Plywood CD No Structural AU

SELEX® Plywood Siding

SELEX® Plywood Siding panels have excellent visual quality, perfect for use in interior uses and various design projects, offering an attractive solution serving for multiple applications. Main applications include interior, ceilings, decorative projects, exterior, shed and barn walls, and soffit. Table 11 presents the main characteristics, while Illustration 11 has a visualisation of the product.

Table 11- SELEX® Plywood Siding main characteristics

Dimensions	1220x2440				
(mm)					
Thickness	12	15			
(mm)					
Thickness	15/32	19/32			
(inches)					
Nº of layers	5 5				
Density	480 - 550 kg / m³				
Sanding	150 grits on front and 120 grits on back				
grain					
Adhesive	Phenol-formaldehyde	that complies with E1			
	emission standard.				
Moisture	8% to 12%				
content					
Structural	ANSI-APA PRP 210 & EN 13986 (CE2+) by HFB				
certification					
Forestry	FSC® and PEFC™ c	ertified products			
certification		·			

Illustration 11- SELEX® Plywood Siding

SELEX® Plywood T&G

SELEX® Plywood T&G panels have a tongue and groove configuration that facilitates installation and provides greater stability and rigidity at the time of installation in construction applications. Main applications include construction of floors and ceilings, and walls. Table 12 presents the main characteristics, while Illustration 12 has a visualisation of the product.

Table 12- SELEX® Plywood T&G main characteristics

Dimensions (mm)	1220x2440			
Thickness (mm)	12	15	18	21
Thickness (inches)	15/32	19/32	23/32	13/16
N° of layers	5	5	6/7	7
Density	480 - 550 kg / m	3		
Sanding grain	150 grits on fron	t and 120 grits on ba	ack	
Adhesive	Phenol-formalde	hyde that complies	with E1 emission standard	I.
Moisture content	8% to 12%			
Structural certification	PS1-19 by TP &	EN 13986 (CE2 +)	by HFB	
Forestry certification	FSC® and PEFC	C™ certified product	s	

Illustration 12- SELEX® Plywood T&G

SELEX® Plywood CAB

This product is very similar to SELEX® Plywood B/C, and is mostly sold in the US market for cabinet making.

SELEX® Plywood RECH

This is usually rejected product used for a wide range of uses, mostly carpentry and furniture.

Content information

Table 13 presents the composition of CMPC SELEX® Plywood products, as well as packaging materials. No dangerous substances from the candidate list of SVHC are included in the product.

Table 13- Product components

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Pine	382-399	-	100%
Water	41-61	-	-
Adhesive	56-69	-	-
Others	0-6	-	-
TOTAL	495-521	-	77%
Packaging materials	Weight, kg	Weight-% (versus the proc	duct)
LDPE	0.467	0.09%	
Polyester	0.051	0.01%	
Low alloyed steel	0.266	0.05%	
Cardboard	0.005	0.001%	
TOTAL	0.197	0.16%	
IUTAL	0.197	0.10%	

Dangerous substances from the candidate list of SVHC for Authorisation	EC No.	CAS No.	Weight-% per functional or declared unit

Not applicable

LCA information

A life cycle assessment is a technique for assessing the environmental aspects and potential impacts associated with a product. By considering potential impacts throughout the life cycle of a product (upstream and downstream), the analysis avoids the shifting of burdens from one type of environmental impact to another, from one political region to another and from one stage to the other.

An Environmental Product Declaration (EPD) is an independently verified and registered document that communicates transparent and comparable information about the life cycle environmental impacts of products. The following information describes the scope and methodology of this EPD for CMPC's SELEX® Plywood products.

Declared unit

This EPD has a cradle to gate with options approach, with a declared unit of 1 m³ of plywood products produced in Chile and installed across different countries across the world.

Reference service life

Given the scope of the analysis (cradle to gate with options) no reference service life is relevant.

Geographial scope

The geographical scope of this EPD is global.

Time representativeness

The information collected for the analysis is 2020, considering the production of all products in this year.

Database(s) and LCA software used

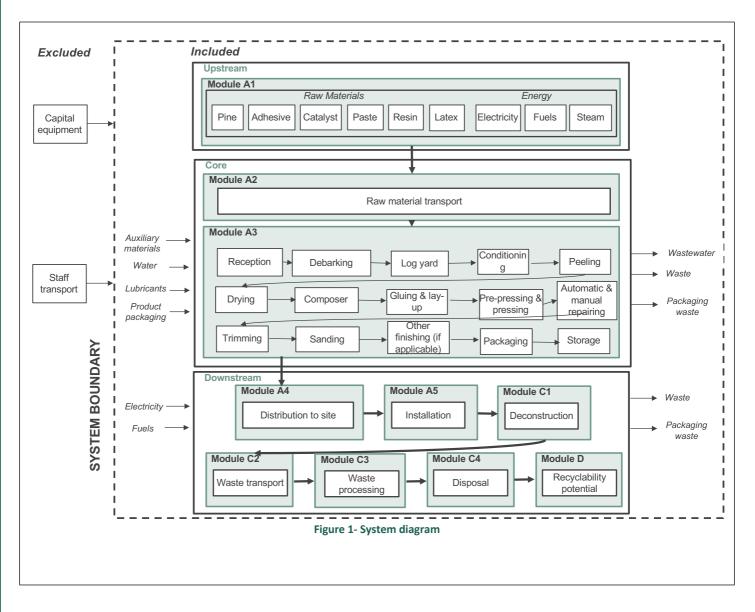
The inventory data for the process are entered in SimaPro LCA program and linked to the pre-existing data for the upstream feedstocks and services. Data were selected per geographic relevance from ecoinvent 3.6 database (Ecoinvent Centre, 2019).

Description of system boundaries

This EPD is cradle to gate grave, however, given that some of the modules are not applicable for CMPC SELEX® Plywood products, the scope is cradle to gate with options¹. Table 14 has the detail of the modules included.

¹ Cradle to gate with options, modules C1–C4, module D and with optional modules (A1–A3 + C + D and additional modules). The additional modules may be one or more selected from A4–A5 and/or B1–B7.

	Pro	duct st	age	prod	ruction cess age			Us	se sta	ge			Er	nd of li	ife sta	ge	Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	A3	A4	A5	B1	B2	В3	В4	В5	B6	B7	C1	C2	C3	C4	D
Modules declared	х	x	x	x	x	ND	ND	ND	ND	ND	ND	ND	x	x	x	x	x
Geography	mostl	oliers y from nile	Chile	Glo	bal	ND	ND	ND	ND	ND	ND	ND		Glo	bal		Global
Specific data used			100%			-	-	-	-	-	-	-	-	-	-	-	-
Variation – products	10% m		ion betwe d the ave		product	-	-	-	-	-	-	-	-	-	-	-	-
Variation – sites	Not ap	oplicable,	only one	e product	ion site	-	-	-	-	-	-	-	-	-	-	-	-


Table 14- Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation

System diagram

Figure 1 presents the system diagram for plywood manufacturing process. This is described below:

- **Reception:** reception of logs that go into the process.
- **Debarking:** the bark is separated from the logs.
- **Log yard:** yard where debarked logs wait to start the manufacturing process. The logs are sprayed with water and chemicals.
- **Conditioning:** the logs go to chambers of hot water for the plasticization of the fibers in the wood.
- **Peeling:** the logs go to a lathe that spins them against a blade to produce a sheet of timber.
- **Drying:** drying to obtain an optimal level of humidity.
- **Composer:** any fixing of individual sheets with glue.
- Gluing & lay-up: the sheets receive adhesive and the boards are formed.
- **Pre-pressing & pressing:** pressing of the boards to give enough consistency to them and allow them to forge.
- Automatic and manual repairing: the repairing of the boards allows for an increase in the quality, by eliminating defects.
- **Trimming:** the boards are given their proper dimensions.
- **Sanding:** sanding for calibration and finishing.
- **Other finishing (if applicable):** include the creation of the siding, cutting and painting, depending on the product.
- **Packaging:** packaging of the products
- Storage: final products go to the warehouse of finished products to await for their shipment.

Foreground data sources and quality

Foreground data on raw material requirements, manufacture and distribution was provided by CMPC for the year 2020. Background data was retrieved from ecoinvent 3.6, which dates from 2019, for processes occurring in Chile and countries supplying raw materials. In compliance with the relevant PCR, generic processes were used for feedstock materials.

Data quality is considered medium to good. More details in Table 15 below.

Table 15- Foreground data sources and quality

	Product data	Module A1	Module A2	Module A3	Module A4	Module A5	Module C	Module D
Data	Range and physical properties	Raw material inputs Energy inputs	Transportati on from national suppliers to CMPC's installations	Water inputs Consumable inputs Waste outputs	Distribution information	Ancillary materials and energy for installation	End of life of products	Recycla bility potential

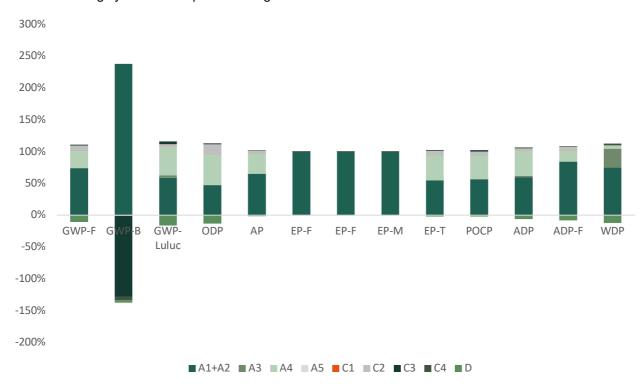
cmpc^{*} Maderas

Sourc Collected by CMPC staff for 2020	Collected by CMPC staff for 2020	Supplier locations provided by CMPC staff for 2020. Distances calculated with online tool. Transport specification s assumed from ecoinvent 3.6 processes.	Collected by CMPC staff for 2020	Collected by CMPC staff for 2020	Estimations based on products description and use made by CMPC staff	Estimations based on types of waste treatment for each country of product sales	Estimati ons based on types of waste treatmen t for each country of product sales
Geographical representativeness	Very good			Very good	Fair	Good	Good
Technical representativeness	Very good			Very good	Fair	Good	Good
Time representativeness	Very good			Very good	Fair	Good	Good

Exclusion of small amounts and cut off criteria

Environmental impacts relating to personnel, infrastructure, and production equipment not directly consumed in the process are excluded from the system. All other reported data were incorporated and modelled using the best available life cycle inventory data.

No other cut offs were necessary for the modules included in this EPD.


Allocation

Due to price differences, economic allocation was performed for wood co- products generated in the process, such as dust, trimmings, chips, etc. according to PCR guidelines.

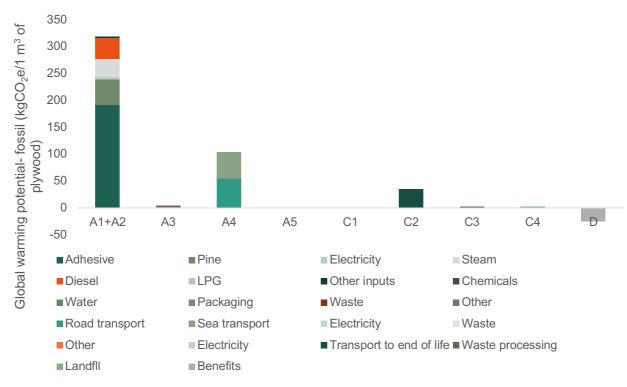
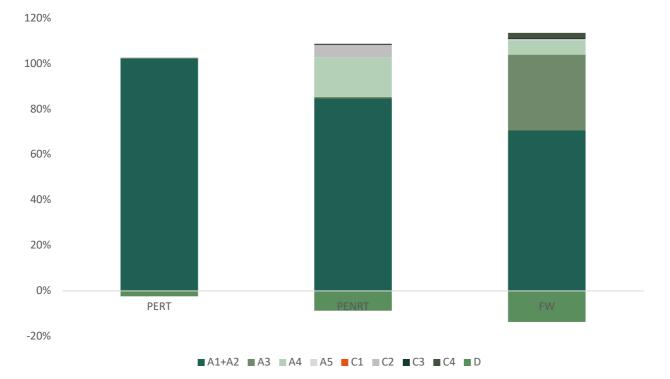
Environmental Information

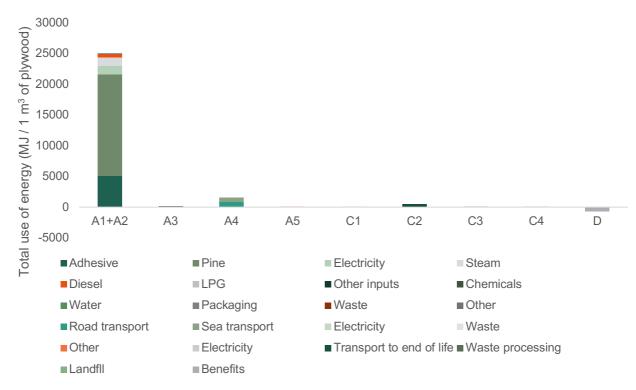
Potential environmental impacts

- Module A1+A2 (raw materials and energy) has the highest impact contribution to most environmental impacts (13 out of 14 indicators, with an average 56% contribution among them). Within these impacts, A1+A2 has the highest contribution in fresh and marine water eutrophication, both with 100% contribution. The pine is responsible for most of the freshwater eutrophication impact (98%).
- Module A1+A2 also present an important sequestration of carbon in biomass, which can be seen in biogenic global warming potential indicator. In contrast, this biogenic carbon is released back to the atmosphere or capture by the following life cycle in module C.
- On average, Module A4 (distribution to markets) has the second highest impact contribution due to the long distances to reach the main markets. This is particularly relevant for ozone depletion potential (48% contribution), abiotic depletion (minerals and metals) (40% contribution), and terrestrial eutrophication (40% contribution).
- The manufacturing process (Module A3) has a low impact contribution across indicators, although it achieves a 29% contribution to water depletion potential due to the water used in the process, particularly for cleaning the logs.

 Module D has a positive effect on the results across impact indicators, although it is low because still roughly 40% of the product still goes to landfill.

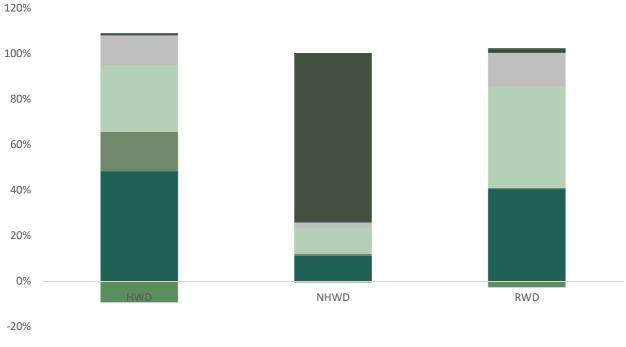
Figure 2 Percentage contribution of life cycle stages to the different potential environmental impact categories for the average plywood products manufactured by CMPC.


Figure 3 - Contribution of main inputs and outputs to fossil global warming potential by module

Resource use

- Module A1+A2 (raw materials and energy) has the highest use of resources in all indicators, although some of these can be considered positive impact, such as use of renewable primary energy resources as raw materials through the pine wood.
- Module A1+A2 also presents the highest contribution to total non- renewable primary energy, with adhesive contributing to 61% of the overall impact.
- Module A3 (manufacturing) only has relevant contribution (33%) to use of fresh water due to the water use in the process.
- Module A4 (distribution to markets) has a small contribution across impacts, only relevant for use of non- renewable energy (17%) due to the burning of fossil fuel.


Figure 4 Percentage contribution of life cycle stages to the different resource use impact categories for the average plywood products manufactured by CMPC.

Waste and Output flows

 Wood going to landfill (Module C4) has the highest contribution to non- hazardous waste disposed (74%). • Use of energy in Module A1+A2 and transport (Module A4) have the highest contribution to hazardous waste (49%) and radioactive waste (41%), respectively.

■ A1+A2 ■ A3 ■ A4 ■ A5 ■ C1 ■ C2 ■ C3 ■ C4 ■ D

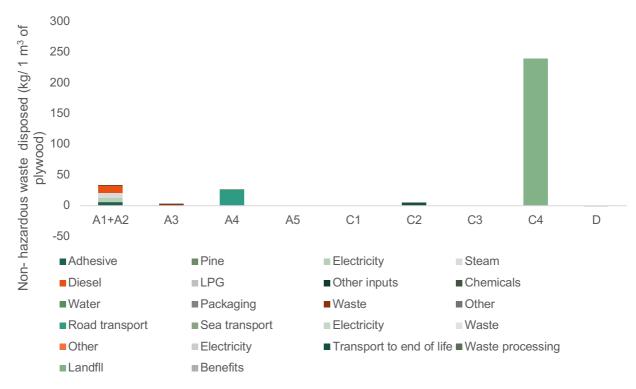


Figure 7- Contribution of main inputs and outputs of non – hazardous waste by module

SELEX® Plywood products Table 16- Potential environmental impact – mandatory indicators according to EN 15804

				Results per	r 1 m ³ of CN	per 1 m ³ of CMPC SELEX® Plywood Products	Plywood I	Products				
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	G	C2	ប	C4	٥
GWP-fossil	kg CO ₂ eq.	2.82E+02	3.44E+01	3.64E+00	3.20E+02	1.16E+02	2.66E-01	1.06E-01	3.49E+01	3.55E+00	2.04E+00	-4.65E+01
GWP-biogenic	kg CO ₂ eq.	-8.46E+02	1.01E-01	4.59E+00	-8.41E+02	1.89E-01	2.06E-02	1.24E-03	3.59E-02	4.51E+02	1.91E+01	1.44E+01
GWP-luluc	kg CO ₂ eq.	7.85E-02	2.12E-02	7.06E-03	1.07E-01	7.82E-02	4.71E-05	1.29E-05	5.08E-03	5.55E-03	2.12E-03	-2.76E-02
GWP-total	kg CO ₂ eq.	-4.97E+02	3.46E+01	8.23E+00	-4.54E+02	1.17E+02	2.87E-01	1.07E-01	3.50E+01	4.55E+02	2.11E+01	-3.21E+01
ODP	kg CFC 11 eq.	1.59E-05	7.00E-06	3.69E-07	2.32E-05	2.34E-05	8.82E-09	2.73E-09	7.59E-06	1.07E-07	6.08E-07	-6.32E-06
AP	mol H⁺ eq.	3.99E+00	1.38E-01	1.68E-02	4.15E+00	2.07E+00	1.09E-03	8.44E-04	2.12E-01	3.78E-02	1.72E-02	-1.06E-01
EP-freshwater	kg PO4 ³⁻ eq.	3.21E+00	3.47E-03	1.43E-03	3.22E+00	7.89E-03	8.57E-05	7.65E-05	8.65E-04	1.67E-03	4.45E-04	-3.54E-03
EP-freshwater	kg P eq.	1.15E+02	2.36E-02	6.10E-03	1.15E+02	2.00E-01	4.96E-04	3.03E-04	3.10E-02	1.50E-02	3.11E-02	-2.26E-02
EP-marine	kg N eq.	2.38E+02	3.69E-02	4.53E-03	2.38E+02	5.15E-01	6.03E-04	2.00E-04	8.32E-02	1.42E-02	7.14E-02	-3.08E-02
EP-terrestrial	mol N eq.	7.41E+00	4.02E-01	3.57E-02	7.84E+00	5.70E+00	2.97E-03	2.09E-03	9.13E-01	1.53E-01	6.40E-02	-3.41E-01
POCP	kg NMVOC eq.	2.01E+00	1.00E-01	1.01E-02	2.12E+00	1.39E+00	7.59E-04	5.05E-04	2.22E-01	6.84E-02	2.02E-02	-8.69E-02
ADP- minerals&metals*	kg Sb eq.	4.42E-04	2.04E-04	2.43E-05	6.71E-04	4.33E-04	4.23E-07	2.94E-07	4.10E-05	6.14E-06	6.71E-06	-6.80E-05
ADP-fossil*	ſW	7.06E+03	4.92E+02	6.24E+01	7.61E+03	1.58E+03	1.79E+00	1.25E+00	4.80E+02	4.17E+01	4.74E+01	-7.56E+02
WDP	m³	6.94E+01	2.08E+00	2.81E+01	9.95E+01	4.75E+00	7.41E-02	6.21E-02	5.71E-01	1.48E-01	2.04E+00	-1.18E+01
Acronyms	GWP-fos ODP = D reachin Accumul	ssil = Global We lepletion potenti g freshwater en lated Exceedanu	arming Potential ial of the stratos id compartment; ce; POCP = For	fossil fuels; GW pheric ozone lay EP-marine = Ev mation potential	/P-biogenic = G yer; AP = Acidifi utrophication pc I of tropospheric	GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic	Potential biogen Accumulated E of nutrients read inerals&metals	iic; GWP-luluc = Exceedance; EP ching marine en = Abiotic deplet	Global Warmin, -freshwater = Eu id compartment; ion potential for	g Potential land utrophication pc EP-terrestrial = non-fossil reso	l use and land u stential, fraction = Eutrophication urces; ADP-foss	se change; of nutrients potential, sil = Abiotic

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

2
5
atc
<u>.ö</u>
p
2
ta
5
5
>
p
ry and v
≥
ato
dat
a
l man
a
itiona
.8
ъ
- add
Ļ
aci
õ
impact
-
tal
ental
l environmental
l environmental
ntial environmental
ential environmental
ential environmental
ential environmental
ential environmental
ential environmental
ential environmental
7- Potential environmental

				Results	per 1 m ³ of (CMPC SELE	per 1 $\ensuremath{m^3}$ of CMPC SELEX(Plywood Products	d Products				
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	G	C2	3	C4	٥
GWP-GHG ²	eq. 20 kg	2.82E+02	3.44E+01	3.64E+00	3.20E+02	1.16E+02	2.66E-01	1.06E-01	3.49E+01	3.55E+00	2.04E+00	-4.65E+01

Additional voluntary indicators e.g. the voluntary indicators from EN 15804 or the global indicators according to ISO 21930:2017

Table 18- Use of resources

				Results p	per 1 m ³ of CMPC SELEX® Plywood Products	SMPC SELE	X® Plywood	I Products				
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	G	3	c	C4	٥
PERE	ſW	8.87E+02	8.04E+00	3.43E+00	8.98E+02	1.89E+01	4.09E-01	3.90E-01	2.34E+00	5.35E+00	8.65E-01	-3.21E+02
PERM	ſW	1.28E+04	0	6.68E-05	1.28E+04	0	0	0	0	0	0	0
PERT	ſW	1.37E+04	8.04E+00	3.43E+00	1.37E+04	1.89E+01	4.09E-01	0.00E+00	2.34E+00	0.00E+00	8.65E-01	-3.21E+02
PENRE	ſW	7.59E+03	5.22E+02	6.16E+01	8.17E+03	1.68E+03	1.91E+00	1.33E+00	5.10E+02	4.42E+01	5.04E+01	-8.34E+02
PENRM	MJ.	0	0	0	0	0	0	0	0	0	0	0
PENRT	ſW	7.59E+03	5.22E+02	6.16E+01	8.17E+03	1.68E+03	1.91E+00	0.00E+00	5.10E+02	0.00E+00	5.04E+01	-8.34E+02
SM	kg	0	0	0	0	0	0	0	0	0	0	0
RSF	ſW	0	0	0	0	0	0	0	0	0	0	0
NRSF	ſW	0	0	0	0	0	0	0	0	0	0	0
FW	m³	8.06E-01	3.08E-02	3.97E-01	1.23E+00	7.12E-02	9.32E-04	6.32E-04	8.35E-03	3.82E-03	2.87E-02	-1.61E-01
Acronyms	PERE raw m used as	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy escources used as raw materials; PERT = Total use of non-renewable primary energy resources; BENRE = Use of non-renewable primary energy resources; PENRE = Use of non-renewable primary energy escources; SM used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM	of renewable primary energy excluding ; PERT = Total use of renewable prima aterials; PENRM = Use of non-renewab Use of secondary material; RSF = Use	ergy excluding r newable primar of non-renewabl ial; RSF = Use	enewable prime y energy resour e primary energ of renewable se	ary energy resol ces; PENRE = ly resources use condary fuels; h	urces used as ra Use of non-rene ed as raw mater NRSF = Use of	aw materials; PE swable primary ials; PENRT = ⁻ non-renewable	renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as ry energy resources; PENRE = Use of non-renewable primary energy resources; PENRT = Total use of non-renewable primary energy re-sources; SM = of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-renewable second	newable primar g non-renewable -renewable prim FW = Use of ne	/ energy resource primary energy ary energy re-so et fresh water	es used as resources ources; SM =

² The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

_
<u> </u>
R
Ĕ
5
Ō
Ъ
ົ
÷
ä
2
>
4
Ĥ
Ð
9
Та

			Res	Results per 1 m	m ³ of CMPC SELEX® Plywood Products	SELEX® PIY	wood Produ	ucts				
Indicator	Unit	A1	A2	A3	Tot.A1-A3	A4	A5	G	3	ប	C4	۵
Hazardous waste disposed	kg	3.60E-03	1.34E-03	1.76E-03	6.71E-03	3.02E-03	2.96E-06	1.40E-06	1.30E-03	2.41E-05	7.37E-05	-9.36E-04
Non-hazardous waste disposed	kg	1.30E+01	1.59E+01	2.39E+00	3.13E+01	2.96E+01	1.92E-02	8.39E-03	5.27E+00	3.81E-01	1.90E+02	-1.22E+00
Radioactive waste disposed	kg	6.32E-03	3.04E-03	1.09E-04	9.47E-03	1.03E-02	3.26E-06	3.82E-07	3.36E-03	1.60E-04	2.82E-04	-6.01E-04

Table 20- Output flows

	٥	0	0	0	0	0
ts	C4	0	0	0	0	0
	ប	7.41E-02	1.81E+02	4.25E+01	0	0
	C2	0	0	0	0	0
	ភ	0	0	0	0	0
Results per 1 m ³ of CMPC SELEX® Plywood Products	A5	0	0	0	0	0
ELEX® Ply	A4	0	0	0	0	0
³ of CMPC S	Tot.A1-A3	3.32E+01	4.22E+02	3.98E+02	0	0
ults per 1 m	A3	3.32E+01	4.22E+02	3.98E+02	0	0
Resi	A2	0	0	0	0	0
	A1	0	0	0	0	0
	Unit	kg	kg	kg	ſW	ſW
	Indicator	Components for re-use	Material for recycling	Materials for energy recovery	Exported energy, electricity	Exported energy, thermal

Table 21- Information on biogenic carbon content

Kesults per 1 m ² of CMI	Kesuits per 1 m ² of CIMPC SELEX® Plywood Product	ducts
BIOGENIC CARBON CONTENT	Unit	QUANTITY
Biogenic carbon content in product	kg C	-332
Biogenic carbon content in packaging	kg C	-0.004

0000

1

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2.

Additional information

The end-of-life modelling is based on the most realistic scenario, using average values for waste treatment in the different countries where CMPC's plywood is sold. Figure 8 below presents the modelled scenario.

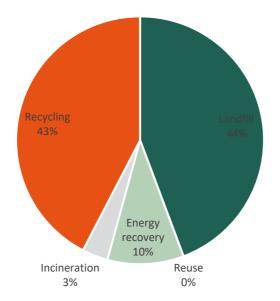


Figure 8- End of life modelled scenario.

Given the end-of-life scenarios of plywood, module D was modelled with the following assumptions:

- Energy recovery: since most of the energy recovery happens in Europe, the assumption is made that plywood to recovery avoids the production of heat through natural gas. The specific energy avoided is based on the calorific value of wood pellets (17MJ/kg of product).
- Reuse: assumes the product is used without any modification, therefore the production of plywood is avoided.
- Recycling: it assumes that plywood converts into wood chips, with a loss of quality of the product. The correction factor is estimated at 0.2.

References

Ecoinvent Centre, 2019. ecoinvent version 3.6 database, Zurich: ETH, Agroscope, EMPA, EPFL, PSI.

EPD International, 2021. Product Category Rules for Construction Products, PCR2019:14, 2021-02-05 (version 1.11), Stockholm: EPD International.

EPD International, 2019. General Programme Instructions for the International EPD System. Version 3.01. 2019-09-18.

European Standards, 2019. Sustainability of construction works - Environmental product declarations, CSN EN 15804:2019, Pilsen: European Standards.

Gobierno de Chile, 2020. Hoja de Ruta RCD Economía Circular en Construcción 2035, Santiago, CHile: s.n.

Google, 2017. Maps. [Online].

International Standardization Organization, 2006. ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework, Geneva: ISO.

International Standardization Organization, 2006. ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines, Geneva: ISO

International Standardization Organization, 2007. Sustainability in building construction - Environmental declaration of building products. ISO 21930:2007, Geneva: ISO.

Sea-Distances.org, 2017. Sea Distances. [Online] . Available at: https://sea-distances.org/

Exp orte ene rgy, ther mal	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Exp orte d ene ele ctri ctri	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Mat eria Is for ene rec ove ove	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Mat eria I for ycli ng	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Co mp nts for use use	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Ra dio ve was te dis pos	2%	2%	-2%	%0	%0	%0	2%	2%	2%	-1%	%0	%0	%0	2%	2%	2%	-1%	%0
No n- haz ous was te te dis ed	3%	3%	-2%	%0	-1%	%0	3%	3%	3%	-2%	%0	%0	%0	3%	3%	3%	-2%	%0
Haz ard ous was te dis pos ed	1%	1%	-1%	%0	-1%	-1%	1%	1%	1%	-1%	-1%	-1%	-1%	1%	2%	1%	-1%	%0
∑ Ľ	2%	1%	-1%	%0	%0	-1%	1%	%0	-2%	-3%	-2%	-2%	-3%	-1%	3%	2%	%0	%0
S R R	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Ки		%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
S	-	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
R R F	4%	%6	-7%	3%	-2%	%9	%6	4%	%6	%2-	2%	-2%	%9	%6	4%	10 %	%9-	3%
╏ 옷 Σ	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
щщщ	4%	%6	-7%	3%	-2%	%9	%6	4%	%6	-7%	2%	-2%	5%	%6	4%	10 %	%9-	3%
RT	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
л Ч Г	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Ч Ш Ш	3%	%0	-1%	-1%	%0	-2%	1%	3%	%0	-1%	-1%	%0	-2%	1%	3%	%0	-1%	-1%
9 4 8 5 –	4%	%6	-6%	2%	-2%	2%	%6	4%	%6	%2-	2%	-2%	2%	%6	4%	%6	%9-	3%
G ⊾	3%	1%	-1%	%0	%0	-1%	1%	%0	-2%	-3%	-2%	-2%	-3%	-1%	3%	1%	%0	%0
AD Fo. sii*	4%	%6	-7%	3%	-2%	%9	%6	4%	%6	%2-	2%	-2%	2%	%6	4%	10 %	%9-	3%
AD min s& als*	4%	2%	-2%	%0	-1%	-1%	2%	-1%	-2%	-5%	-4%	-4%	-4%	-1%	%9	4%	%0	2%
6 B	3%	4%	-3%	1%	-1%	2%	5%	3%	4%	-3%	1%	-1%	2%	4%	3%	5%	-3%	1%
EP- terr estr ial	2%	3%	-2%	%0	-1%	1%	3%	2%	3%	-2%	%0	-1%	1%	3%	3%	3%	-2%	1%
ЕР. mar ine	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
EP- fres ater 2	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
EP- fres hw ater	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
AP	4%	8%	-6%	2%	-2%	5%	8%	4%	8%	%9-	2%	-2%	4%	8%	4%	8%	-6%	2%
8 °	2%	2%	-2%	%0	%0	%0	2%	2%	1%	-2%	%0	-1%	-1%	1%	3%	2%	-1%	%0
G≷ − tota	-5%	~9-	5%	-1%	1%	-1%	%2-	-5%	%9-	2%	-1%	1%	-1%	-6%	-5%	-6%	2%	-1%
G C C C C	2%	1%	-2%	-1%	-1%	-1%	1%	4%	2%	-1%	%0	%0	%0	2%	3%	2%	-1%	%0
G P - Bio ic	-1%	%0	%0	%0	%0	1%	%0	-1%	%0	%0	%0	%0	1%	%0	-1%	%0	%0	%0
G fos P. G	4%	%6	~9-	2%	-2%	5%	%6	4%	%6	-7%	2%	-2%	5%	%6	4%	%6	%9-	3%
	A/C-6.5	A/C-12	A/C-15	A/C-18	A/C-21	A/C-25	A/C-30	B/B Deco- 6.5	B/B Deco-12	B/B Deco-15	B/B Deco-18	B/B Deco-21	B/B Deco-25	B/B Deco-30	B/Cp- 6.5	B/Cp-12	B/Cp-15	B/Cp-18

Appendix A. Impact variation across products

%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	2%	2%	-1%	%0	%0	%0	2%	1%	2%	-2%	%0	%0	%0	2%	2%	-1%	%0	%0	%0
%0	3%	3%	-2%	%0	%0	%0	3%	1%	3%	-2%	%0	-1%	%0	3%	3%	-2%	%0	%0	%0
%0	2%	1%	-1%	%0	%0	%0	1%	%0	1%	-1%	%0	-1%	-1%	2%	1%	-1%	%0	%0	%0
1%	3%	2%	%0	%0	1%	%0	1%	2%	1%	-1%	%0	%0	-1%	3%	2%	%0	%0	1%	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
-2%	4%	10 %	%9-	3%	-2%	%9	10 %	-1%	%6	%2-	3%	-2%	%9	4%	10 %	%9-	3%	-2%	%9
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
-2%	4%	10 %	%9-	3%	-2%	%9	10 %	-1%	%6	%2-	3%	-2%	%9	4%	10 %	%9-	3%	-2%	%9
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	3%	%0	-1%	-1%	%0	-2%	1%	2%	%0	-1%	-1%	%0	-2%	3%	%0	-1%	-1%	%0	-2%
-2%	4%	%6	-6%	3%	-2%	%9	%6	-1%	%6	%9-	2%	-2%	5%	4%	%6	%9-	3%	-2%	6%
1%	3%	1%	%0	%0	1%	-1%	1%	2%	1%	-1%	%0	%0	-1%	3%	1%	%0	%0	1%	-1%
-2%	4%	10 %	-6%	3%	-2%	%9	40%	-1%	%6	%2-	3%	-2%	%9	4%	10 %	%9-	3%	-2%	%9
1%	%9	4%	%0	2%	1%	1%	4%	2%	2%	-2%	%0	-1%	-1%	%9	4%	%0	2%	1%	1%
-1%	3%	5%	-3%	1%	-1%	2%	5%	%0	4%	-3%	1%	-1%	2%	3%	5%	-3%	1%	-1%	2%
%0	3%	3%	-2%	1%	%0	1%	3%	%0	3%	-2%	%0	-1%	1%	3%	3%	-2%	1%	%0	1%
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
-2%	4%	8%	-6%	2%	-2%	5%	8%	-1%	8%	%9-	2%	-2%	5%	4%	8%	%9-	2%	-2%	5%
%0	3%	2%	-1%	%0	%0	%0	2%	1%	2%	-2%	%0	%0	%0	3%	2%	-1%	%0	%0	%0
1%	-5%	-6%	5%	-1%	1%	-2%	-7%	-1%	%9-	5%	-1%	1%	-1%	-5%	-6%	2%	-1%	1%	-2%
%0	3%	2%	-1%	%0	%0	-1%	2%	1%	1%	-2%	-1%	-1%	-1%	3%	2%	-1%	%0	%0	-1%
%0	-1%	%0	%0	%0	%0	1%	%0	-1%	%0	%0	%0	%0	1%	-1%	%0	%0	%0	%0	1%
-2%	4%	%6	-6%	3%	-2%	6%	%6	-1%	%6	~9-	2%	-2%	5%	4%	%6	%9-	3%	-2%	6%
B/Cp-21	B/C-6.5	B/C-12	B/C-15	B/C-18	B/C-21	B/C-25	B/C-30	B/D Estructu ral AUS- 7	B/D Estructu ral AUS- 12	B/D Estructu ral AUS- 15	B/D Estructu ral AUS- 18	B/D Estructu ral AUS- 21	B/D Estructu ral AUS- 25	Cp/C- 6.5	Cp/C-12	Cp/C-15	Cp/C-18	Cp/C-21	Cp/C-25

%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
2%	2%	2%	-2%	%0	-1%	%0	2%	2%	2%	-1%	%0	%0	%0	2%	2%	-1%
3%	3%	2%	-3%	%0	-1%	%0	3%	3%	3%	-2%	%0	%0	%0	3%	3%	-2%
1%	5%	4%	1%	2%	2%	2%	4%	2%	1%	-1%	%0	%0	%0	1%	1%	-1%
1%	1%	%0	-1%	-1%	-1%	-2%	%0	3%	2%	%0	%0	1%	%0	1%	-2%	-3%
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
10 %	4%	%6	%2-	3%	-2%	%9	%6	4%	10 %	%9-	3%	-2%	%9	10 %	%6	%2-
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
10 %	4%	%6	-7%	3%	-2%	%9	%6	4%	10 %	%9-	3%	-2%	%9	10 %	%6	%2-
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
1%	3%	%0	-1%	-1%	%0	-2%	1%	3%	%0	-1%	-1%	%0	-2%	1%	%0	-1%
%6	4%	%6	-7%	2%	-2%	5%	%6	4%	%6	%9-	3%	-2%	%9	%6	%6	%2-
1%	1%	%0	-2%	-1%	-1%	-2%	%0	3%	1%	%0	%0	1%	-1%	1%	-2%	-3%
40 8	4%	%6	-7%	3%	-2%	%9	%6	4%	10 %	%9-	3%	-2%	%9	10 %	%6	-7%
4%	1%	%0	-4%	-2%	-3%	-3%	%0	6%	4%	%0	2%	1%	1%	4%	-2%	-5%
5%	3%	4%	-3%	1%	-1%	2%	2%	3%	5%	-3%	1%	-1%	2%	5%	4%	-3%
3%	2%	3%	-2%	%0	-1%	1%	3%	3%	3%	-2%	1%	%0	1%	3%	3%	-2%
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
8%	4%	8%	%9-	2%	-2%	5%	8%	4%	8%	%9-	2%	-2%	5%	8%	8%	-6%
2%	2%	1%	-2%	%0	-1%	-1%	1%	3%	2%	-1%	%0	%0	%0	2%	1%	-2%
%2-	-5%	-6%	5%	-1%	1%	-1%	-6%	-5%	%9-	5%	-1%	1%	-2%	%2-	-6%	5%
2%	2%	1%	-2%	-1%	-1%	-2%	1%	3%	2%	-1%	%0	%0	-1%	2%	2%	-1%
%0	-1%	%0	%0	%0	%0	1%	%0	-1%	%0	%0	%0	%0	1%	%0	%0	%0
%6	4%	%6	-7%	2%	-2%	5%	%6	4%	%6	%9-	3%	-2%	%9	%6	%6	~2-
Cp/C-30	C/D-6.5	C/D-12	C/D-15	C/D-18	C/D-21	C/D-25	C/D-30	CD No Estructu ral AUS- 6.5	CD No Estructu ral AUS- 12	CD No Estructu ral AUS- 15	CD No Estructu ral AUS- 18	CD No Estructu ral AUS- 21	CD No Estructu ral AUS- 25	CD No Estructu ral AUS- 30	RANUR ADOS- 12	RANUR ADOS- 15

%	%	%	%	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0										
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
2%	-2%	%0	%0	1%	2%	%0	1%	2%	-2%	%0	%0	%0	2%
3%	-2%	%0	-1%	1%	3%	%0	1%	3%	-2%	%0	-1%	%0	3%
1%	-1%	%0	-1%	%0	1%	%0	%0	1%	-1%	%0	-1%	-1%	1%
1%	-1%	%0	%0	2%	1%	%0	2%	1%	-1%	%0	%0	-1%	1%
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%6	%2-	3%	-2%	-1%	%6	3%	-1%	%6	-7%	3%	-2%	%9	9%
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
6%	%2-	3%	-2%	-1%	%6	3%	-1%	%6	-7%	3%	-2%	%9	%6
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
0%0	-1%	-1%	%0	2%	%0	-1%	2%	%0	-1%	-1%	%0	-2%	1%
6%	%9-	2%	-2%	-1%	%6	2%	-1%	%6	-6%	2%	-2%	5%	%6
1%	-1%	%0	%0	2%	1%	%0	2%	1%	-1%	%0	%0	-1%	1%
%6	-7%	3%	-2%	-1%	%6	3%	-1%	%6	-7%	3%	-2%	%9	%6
2%	-2%	%0	-1%	2%	2%	%0	2%	2%	-2%	%0	-1%	-1%	2%
4%	-3%	1%	-1%	%0	4%	1%	%0	4%	-3%	1%	-1%	2%	5%
3%	-2%	%0	-1%	%0	3%	%0	%0	3%	-2%	%0	-1%	1%	3%
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
8%	%9-	2%	-2%	-1%	8%	2%	-1%	8%	%9-	2%	-2%	5%	8%
2%	-2%	%0	%0	1%	2%	%0	1%	2%	-2%	%0	%0	%0	2%
-6%	5%	-1%	1%	-1%	-6%	-1%	-1%	-6%	5%	-1%	1%	-1%	-7%
1%	-2%	-1%	-1%	1%	1%	-1%	1%	1%	-2%	-1%	-1%	-1%	1%
%0	%0	%0	%0	-1%	%0	%0	-1%	%0	%0	%0	%0	1%	%0
%6	%9-	2%	-2%	-1%	%6	2%	-1%	%6	-6%	2%	-2%	5%	%6
SELEX ® PLYWO OD T&G-12	SELEX ® PLYWO OD T&G-15	SELEX ® PLYWO OD T&G-18	SELEX ® PLYWO OD T&G-21	CAB-7	CAB-12	CAB-18	RECH-7	RECH- 12	RECH- 15	RECH- 18	RECH- 21	RECH- 25	RECH- 30

